Proof that 0=1
Requires knowledge of calculus
Given:
- i = √-1
- i-1 = i3 = -i
- i-2 = i2 = -1
- sin²(y) + cos²(y) = 1
- eix = cos(x) + isin(x)
- y = eax ∴ dy = aeax dx
- y = sin(x) ∴ dy = cos(x) dx
- y = cos(x) ∴ dy = -sin(x) dx
- ∫ku = k∫u where k is a constant
- ∫u dv = uv − ∫v du
Proof
- First, we attempt to find ∫(eiy sin(y)) dy.
∫(eiy sin(y)) dy = -ieiy sin(y) − ∫(-ieiy cos(y)) dy
u = sin(y), dv = eiy dy
du = cos(y) dy, v = -ieiy
-i∫(eiy cos(y)) dy = -eiy cos(y) + -∫(eiy sin(y)) dy
u = cos(y), dv = eiy dy
du = -sin(y) dy, v = -ieiy
∫(eiy sin(y)) dy = -ieiy sin(y) + eiy cos(y) + ∫(eiy sin(y)) dy - Now, we cancel out and factor.
0 = -ieiy sin(y) + eiy cos(y)
0 = (eiy)(-isin(y) + cos(y))
0 = (eiy)(cos(y) − isin(y)) - Use Euler's Formula (that eix = cos(x) + isin(x)).
0 = (cos(y) + isin(y))(cos(y) − isin(y))
0 = cos²(y) − isin(y)cos(y) + isin(y)cos(y) − i²sin²(y)
0 = cos²(y) − -sin²(y)
0 = cos²(y) + sin²(y)
0 = 1. Q.E.D.